Finite axiomatization of quasivarieties of relational structures

Michał Stronkowski

Charles University in Prague & Warsaw University of Technology

JardaFest, June 2010

Proof

		16	_
Elements of M_k		Elements of \mathbb{Z}_2^{n+6}	
a_0		$1100 000 \cdots 000 \cdots 000$	0
a_1		$0011 000 \cdots 000 \cdots 000$	0
a'_0	\mapsto	$1010 000 \cdots 000 \cdots 000$	0
a_1^{\prime}		$0101 000 \cdots 000 \cdots 000$	0
b	\mapsto	1111 000 · · · 000 · · · 000	0
c ₀		0000 100 · · · 000 · · · 000	0
c_1		$0000 010 \cdots 000 \cdots 000$	0
c_{k-1}	\mapsto	$0000 000 \cdots 100 \cdots 000$	0
c_{k+1}		$0000 000 \cdots 001 \cdots 000$	0
c_n		$0000 000\cdots000\cdots001$	0
d_0		0011 100 · · · 000 · · · 000	0
d_1		$0011 110 \cdots 000 \cdots 000$	0
d_{k-1}		$0011 111 \cdots 100 \cdots 000$	0
d_k	\mapsto	$0011 111 \cdots 110 \cdots 000$	1
d_{k+1}		$0011 111 \cdots 111 \cdots 000$	1
d_n		$0011 111\cdots 111\cdots 111$	1
d'_0	\mapsto	0101 100 · · · 000 · · · 000	0
d_1^0		$0101 110 \cdots 000 \cdots 000$	0
d'_{k-1}		$0101 111 \cdots 100 \cdots 000$	0
$d'_{k-1} \atop d_k$		$0101 111 \cdots 110 \cdots 000$	0
d'_{k+1}		$0101 111 \cdots 111 \cdots 000$	0
v+1			
d'_n		$0101 111\cdots 111\cdots 111$	0
e	\mapsto	1111 111 · · · 111 · · · 111	1

Table. The mapping j_k . Elements of \mathbb{Z}_2^{n+6} are represented as words over \mathbb{Z}_2 . For the sake of clarity we divided these words into 3 segments of length 4, n+1 and 1 respectively. In the second segment (k-1)th, kth and (k+1)th digits are placed between dots.

Quasivarieties

Quasi-identities look like

$$(\forall \bar{x}) [\varphi_1(\bar{x}) \wedge \cdots \wedge \varphi_n(\bar{x}) \rightarrow \varphi(\bar{x})],$$

where $\varphi_i(\bar{x})$, $\varphi(\bar{x})$ are atomic formulas.

Quasivarieties look like

Mod(quasi-identities).

The smallest quasivariety containing a class \mathcal{K} (generated by) equals

$$\mathsf{Q}(\mathcal{K}) = \mathsf{SPP}_\mathsf{U}(\mathcal{K})$$

Quasivariety $\mathcal Q$ is finitely axiomatizable (finitely based) if $\mathcal Q = \mathsf{Mod}(\Sigma)$ for some finite set Σ of quasi-identities.

Forbidden substructures

Observation ↓

Assume that $\mathcal K$ is a class of relational structures axiomatized by a finite set Φ of universal sentences. Let n be the maximal number of variables occurring in sentences from Φ . Then for each relational structure $\mathbf M$ we have

$$\mathbf{M} \in \mathcal{K} \quad \text{iff} \quad (\forall \mathbf{N} \leq \mathbf{M}) [|N| \leq n \rightarrow \mathbf{N} \in \mathcal{K}].$$
 (A_n)

Observation ↑

Conversely, if the language of K is finite and there exists a finite n such that (A_n) holds for all M, then K is finitely axiomatizable.

Meet of observations 1

An universal class (quasivariety) \mathcal{K} of relational structures in a finite language is finitely axiomatizable if and only if it admits a finite set of finite forbidden substructures.

Graphs

A graph is a relational structure with one binary symmetric and irreflexive relation.

Theorem (Nešetřil, Pultr '78)

Let $\mathcal K$ be a quasivariety generated by a finite number of finite graphs. Then $\mathcal K$ is finitely axiomatizable only in the following cases:

$$\mathcal{K} = \left\{ \bigcirc \right\};$$

$$\mathcal{K} = \left\{ \bigcirc, \bullet \right\};$$

- $ightharpoonup \mathcal{K} = \mathsf{discrete} \; \mathsf{graphs} \; \cup \; \left\{ \bigcap_{\bullet} \right\};$
- $ightharpoonup \mathcal{K} = \{ \text{disjoint unions of} \bullet ---- \bullet \text{ and } \bullet \} \cup \{ \bigcirc \};$
- $ightharpoonup \mathcal{K} = \{ ext{disjoint unions of complete bipartite graphs} \} \cup \ \left\{ igcap_{ullet} \right\}.$

Antivarieties

Anitivariety is a $H^{-1}S$ -closed elementary class or, equivalently, a class defined by anti-idetities.

 $A(\mathcal{K}) = \text{the smallest antivariety containing } \mathcal{K}.$

Fact

If \mathcal{A} is an antivariety, then $\mathcal{A} \cup \{\mathsf{loop}\}\$ is a quasivariety. Moreover, \mathcal{A} is finitely axiomatizable iff $\mathcal{A} \cup \{\mathsf{loop}\}\$ does.

Antivariety \mathcal{A} admits a finite duality if there is a finite family of finite structures O_1, \ldots, O_n such that

$$(\forall M) \ [M \in \mathcal{A} \quad \text{iff} \quad O_1, \ldots, O_n \not \in \mathsf{A}(M)].$$

Let
$$CSP(\mathcal{K}) = A(\mathcal{K})_{fin}$$
.

CSPs

Therem (Atserias, Larose, Loten, Rossman, Tardif '08)

Let **M** be a finite relational structure. TFAE

- ► A(M) ∪ {loop} is finitely axiomatizable;
- A(M) is finitely axiomatizable;
- A(M) admits a finite duality;
- CSP(M) is finitely axiomatizable (relative to finite structures);
- CSP(M) admits a finite duality (relative to finite structures);
- Core(M)² dismantles to the diagonal.

Semigroups

The graph of an algebra $\mathbf{A}=(A,\Omega)$ is NOT a graph. It is the relational structure

$$\mathsf{G}(\mathbf{A}) = (\mathsf{A}, \{\mathsf{R}_{\omega}\}_{\omega \in \Omega}),$$

where

$$(a_0,\ldots,a_k)\in R_\omega$$
 iff $\omega(a_0,\ldots,a_{k-1})=a_n$.

For a class C of algebras let $G(C) = \{G(\mathbf{A}) \mid \mathbf{A} \in C\}$.

Theorem (Gornostaev, Stronkowski '09)

Let $\mathcal C$ be a class of semigroups possessing a nontrivial member with a neutral element. Then $\mathsf{QG}(\mathcal C)$ is not finitely axiomatizable.

Corollary

Let $\mathcal C$ be a class of monoids or groups possessing a nontrivial member. Then $\mathsf{QG}(\mathcal C)$ is not finitely axiomatizable.

Proof

Recall

Observation ↓

Let $\mathcal K$ be a finitely axiomatizable quasivariety of relational structures. Then there is a finite n such that for each relational structure $\mathbf M$ we have

$$M \in \mathcal{K}$$
 iff $(\forall N \leq M)[|N| \leq n \rightarrow N \in \mathcal{K}].$

Thus it is enough to construct for each n a model M such that

- M ∉ QG(Semigroups),
- ▶ if $\mathbf{N} \leq \mathbf{M}$ and $|N| \leq n$, then $\mathbf{N} \in QG(\mathcal{C})$.

Proof

We can do it easily with the aid of the quasi-identity

$$(\forall \bar{x}, \bar{x}', y, \bar{z}, \bar{u}, \bar{u}', v) \left[R(x_0, x_1, y) \land R(x'_0, x'_1, y) \right. \\ \land R(x_1, z_0, u_0) \land R(u_0, z_1, u_1) \land \cdots \land R(u_{n-1}, z_n, u_n) \land R(x_0, u_n, v) \\ \land R(x'_1, z_0, u'_0) \land R(u'_0, z_1, u'_1) \land \cdots \land R(u'_{n-1}, z_n, u'_n) \rightarrow R(x'_0, u'_n, v) \right]$$

i.e. \mathbf{M} is given by

Elements of M_k		Elements of \mathbb{Z}_2^{n+6}
a_0		$1100 000 \cdots 000 \cdots 000 0$
a_1		$0011 000 \cdots 000 \cdots 000 0$
a'_0	\mapsto	$1010 000 \cdots 000 \cdots 000 0$
a_1^{\prime}		$0101 000 \cdots 000 \cdots 000 0$
b	\mapsto	1111 000 · · · 000 · · · 000 0
c ₀		0000 100 · · · 000 · · · 000 0
c_1		$0000 010 \cdots 000 \cdots 000 0$
c_{k-1}	\mapsto	$0000 000 \cdots 100 \cdots 000 0$
c_{k+1}		$0000 000 \cdots 001 \cdots 000 0$
c_n		$0000 000 \cdots 000 \cdots 001 0$
d_0		0011 100 · · · 000 · · · 000 0
d_1		$0011 110 \cdots 000 \cdots 000 0$
d_{k-1}		$0011 111 \cdots 100 \cdots 000 0$
d_k	\mapsto	$0011 111 \cdots 110 \cdots 000 1$
d_{k+1}		$0011 111 \cdots 111 \cdots 000 1$
d_n		$0011 111\cdots 111\cdots 111 1$
d'_0		0101 100 · · · 000 · · · 000 0
d_1'		$0101 110 \cdots 000 \cdots 000 0$
d'_{L} ,		$0101 111 \cdots 100 \cdots 000 0$
$d'_{k-1} \atop d_k$	\mapsto	$0101 111 \cdots 110 \cdots 000 0$
d'_{k+1}		$0101 111 \cdots 111 \cdots 000 0$
K+1		
d'_n		$0101 111\cdots 111\cdots 111 0$
e	\mapsto	1111 111 · · · 111 · · · 111 1

Table. The mapping j_k . Elements of \mathbb{Z}_2^{n+6} are represented as words over \mathbb{Z}_2 . For the sake of clarity we divided these words into 3 segments of length 4, n+1 and 1 respectively. In the second segment (k-1)th, kth and (k+1)th digits are placed between dots.